Software

PROFILING YOUR APPLICATION WITH INTEL
VTUNE" AMPLIFIER AND INTEL" ADVISOR

aaaaaaaaaaaaaaaaaaaaa

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Targeting the current ISA is fundamental to fully exploit vectorization
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)
— Up to 64 Physical cores and 256 logical processors per socket on Thetal
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright © 2018, Intel C

Tuning Workflow

Intel® W Tune™ Amplifier's
Application Performance Snapshot

MPI Bound CPU Bound Thread-level FPU
MPI Imbalance Mamory Bound serial time underutilization
Thread-level scalability issues parallelization {vector efficiency
+ {OpenMP analysis) issues)

Intel® Trace Analyzer ¢ +

and Collector

Intel® MPI Tuner

CLUSTER NODE CORE

Intel® Advisor

Intel® WTune™ Amplifier Threading Vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

VTune™ Amplifier's Application Performance
Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

» Informative, actionable data in clean HTML report

= Detailed reports available via command line

= |ow overhead, high scalability

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
$ source /opt/intel/vtune amplifier/apsvars.sh
$ export PMI NO FORK=1
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aps -report=./aps result ...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-07 12:08:48

Nmber of renks: 144 Your application is MPI bound.

anks per node:

Opgn,\fpm,eads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), nen-
HW Platform: Intel(R) Xeen(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling toals

Logical Core Count per node: 72 like [ntel® Trace Analyzer and Collector to explore performance bottlenecks.

121.39s BT

MPI Time 5374%K <10% | —
Elapsed Time OpenMP Imbalance 043% <10%

14.70% <20%

0.30%K >50%
0.00% <10%

50.98 0.68

SPFLOPS

MPI Time Stalls
53.74%N of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots
65.235, 0.52s
(65.235) (0529 Cache Stalls SBFLOPS per.Cycle

MPLImbalance 12.84% of cycles 0.08 Out of 32.00

11.03% of Elapsed Time

(19,59 5 b : DRAM Stalls Vector Capacity Usage

: i Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak. 786.96 MB ;‘1‘%’; — FP Instruction Mix
. .79% of remote accesses 9

Herd o Average: 687.49 MB d % of Packed FP |

- Per rank:
Barrier 5.52 Peak: 127.62 MB
Irecy 3.70 Average: 38.19 MB

Virtual: . .
Scatterv 0.00 P Arith/Mem Rd Instr. Ratio
Per node: 0.07R
Peak: 9173.34 MB
_| /OBOU n d Averag.e: 9064.92 MB
Per rank:

0.00%

Peak; 566.52 MB

(AVG 0.00, PEAK 0.00) Average 50361 MR

Optimiza

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" ADVISOR

Vectorization and Threading

Intel® Advisor

Modern HPC processors explore different level of parallelism:
» between the cores: multi-threading (Theta: 64 cores, 256 threads)
= within a core: vectorization (Theta: 8 DP elements, 16 SP elements)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the
vectorization process

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

» |nvestigate application place within roofline model

= Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

= Determine data structure optimization needs
3. Collect dependencies

= Differentiate between real and assumed issues blocking vectorization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI
provides the same capabilities in a user-friendly interface.

| recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows,
Mac) to avoid issues with lag.

Some things of note:

= Use /projects rather than /home for profiling jobs

= Setyour environment:
$ source /opt/intel/advisor/advixe-vars.sh
$ export LD LIBRARY PATH=/opt/intel/advisor/1ibé64:$LD LIBRARY PATH
$ export PMI NO FORK=1

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sample Script

#!/bin/bash

#COBALT -t 30
#COBALT -n 1 —Basic scheduler info (the usual)
#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD _LIBRARY PATH=/opt/intel/advisor/lib64:$LD LIBRARY PATH [~ Cnvironmentsetup

source /opt/intel/advisor/advixe-vars.sh

export PMI NO FORK=1 Two separate collections
aprun -n 1 -N 1 advixe-cl -c survey --project-dir ./adv_res --search-dir src:=./ --search-dir bin:=./ --./exe

aprun -n 1 -N 1 advixe-cl -c tripcounts -flops-and-masks --project-dir ./adv_res \

--search-dir src:=./ --search-dir bin:=./ -- ./exe

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline
Next Ste PS If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. Ll improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ Scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

NBODY DEMONSTRATION

Nbody gravity simulation

Let's consider a distribution of point masses m_1,...m_nlocated atr_1,...,r_n.

We want to calculate the position of the particles after a certain time interval using the Newton law of

gravity.
struct Particle for (i = 0; i < n; i++){ // update acceleration
{ for (j = 0; j < n; j++){
public: real type distance, dx, dy, dz;
Particle() { init();} real type distanceSqr = 0.0;
void init() real type distanceInv = 0.0;
{
pos[0] = 0.; pos[l] = 0.; pos[2] = O.; dx = particles[j].pos[0] - particles[i].pos[0];
vel[0] = 0.; vel[l] = 0.; vel[2] = O.;
acc[0] = 0.; acc[l] = 0.; acc[2] = 0.;
mass = 0.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqrt(distanceSqr) ;
real type pos[3];
real type vel[3]; particles[i] .acc[0] += dx * G * particles[j] .mass *
real type acc[3]; distanceInv * distanceInv * distancelnv;
real type mass; particles[i] .acc[1l] += ..
}; particles[i] .acc[2] += ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect Roofline Data

Starting with version 2 of the code we collect both survey and tripcounts data:
export LD LIBRARY PATH=/opt/intel/advisor/1ib64:$LD_ LIBRARY PATH
source /opt/intel/advisor/advixe-vars.sh
export PMI NO FORK=1

aprun -n 1 -N 1 advixe-cl --collect survey --project-dir ./adv_res --search-dir src:=./ \

--search-dir bin:=./ -- ./nbody.x
aprun -n 1 -N 1 advixe-cl --collect tripcounts -flops-and-masks --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

And generate a portable snapshot to analyze anywhere:

advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \

--cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody naive

If finalization is too slow on compute add -no-auto-finalize to collection line.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

LTE ,t All Modules ~ || All Sources ~
L L

. — = iEL AR 2018 GUI left panel provides access to
@ Vectorization Advsor ' “' further tests

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parall
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottle:
Advisor Roofline model automation.

- Summary provides overall performance
(“) Program metrics . =
Eapsed Time | characteristics

Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 2120 Total GFLOPS 207
Total Arithmetic Intensity © 035165

= Lists instruction set(s) used

~' Loop metrics

Metrics Total
Tota CPU time 014 S 1000% = Top time consuming loops are listed
Time in 1 vectorized loop 100ss [90 .4% . -
Time in scalar code 006s | |nd|v|d ually
Total GFLOP Count 2120 () 1000%
e v = Loops are annotated as vectorized and
~! Vectorization Gain/Efficiency .
Vectorized Loops Gam/E"ucl:ency 10.05x —:I n o n _Ve Cto r I Ze d
Program Approximate Gain ' 10.00x
~) Top time-consuming loops n

b i e Vectorization efficiency is based on used
s = Py, Y ISA, in this case Intel® Advanced Vector

D [loop in GSi ion:: at <pp:136] 0.060s 10.140s 2000

© floop in GSimulation:start at GSimulation.cpp:133] 0s 101405 500 EXtenSionS 51 2 (AVX51 2)

< >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Source

P - o TR i vonaer | s RS o Inli . : .
’ Nnline iInformation regardin
[B) Summary % Survey & Roofline |™i Refinement Reports
. . i Vectorized Loops Bl FLops
+| =] Function Call Sites and Loops ¥ Performance Issues Self Time = | Total Time Type Why No Vectorization? - -
Vector... Efficiency | Gain E... VL (Ve.. | Self GFLOPS Oo C aracterlstlcs
[loop in t cpp:138] @2 gather/sc... 10.080s 8 10.080s B Vectorized (Body) AVXs.. [83% |10.05x 16 2093 ==
40 [loop in GSimulationzstart at GSimulation.cpp:136] & 1 Opportunity for outer 1. 0060s| 10.140s B Scalar & inner loop was already v... 1.700 D
|5 start 0000sl 10.140s BN Function
: = F main 0.000s! 10.140s SR Function
5 GSimulation=start 0000s| 10.140s SN Function | ISA u Sed
40 [loop in GSimulation:start at Gimulation.cpp:133) & 1 Data type conversions .. 0000 10.140s BN Scalar & inner [oop was already v...
< > < >
o : , = Types processed
churce|Tupon|UodeMalym:|Asscmbly|Q @ Why No
Line Source Total Time | % |Loop/FunctionTime | % | Traits |*
132 comst mouBIEe tU = time.start(); . .
I o o e = Compiler transformations
e iner tr r |
135 £30 += time.stare(); .
136 for (i = 0; i < n; i++)// update acceleration a lled
137 {
138 © for (j = 0; 3 < a; j++) 0.100s 10,0805 m—
32; UInt32 data type(s) and includes 2-Source Perxn
= Vector length used
r u
139 t
140 real type dx, dy, dz;
141 real_type distlncesq:
142 real_type distancelnv
a3 . LR
Selected (Total Time): 0.100s v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Survey Report (Code Analytics)

Detailed loop information S

+] =] Function Call Sites and Loops @ Performance Self Time = | Total Time | Type Why No Vectorization? Vectorized Loops & op
Issues Vector...| Efficiency | Gain E... VL (Ve... Self ¢
[loop i at :138] @2 gat... 10.080s B 10.080s B Vectorized (Body) AVXS ... 10.05x 16 2.09:
. . 5 lloop in GSimulation:start at GSimulation.cpp:136] & 1 Opportunity for.. 0060s| 10,1405 SN Scalar inner loop was already v... 1700
] I n St ru Ctl 0 n m IX 1 _stan 0000s| 10.140s @ Function
= = § main 0.0005! 10.140s S Function
f GSimulation:start 0000sI 10.140s SN Function
5 loop in GSimulation:start at GSimulation.cpp:133] @ 1 Data type cornw.. 0.000s! 10.1405 I Scalar & inner loop was already v...
. .
= |SA used, including
’ < >«

SUbgrOUpS SmmelTnpDM‘CndsAnalyﬂ(s[Aﬂmb}yl-’ & Why No

Loop in GSmulation. start at GSimulation.cpp. 138 Average Trip Counts: 125 (¥) GFLOPS: 2.09325 ®
AVX-512 Mask Usage: 37
. 10.080s asi Tsage
] Loop traits L 5 5
AVX512ER_512; 10.080s raits Static Instruction Mix

Square Roots

AVX512F_512 sefim

. EMA) Gathers 2

= Imegular Memory Access Patterns May Decrease Perfor
Suggestion See Recommendations Tab

> Compute 37% (21) EEID
* Mixed 4% (2)0 Dends

= Square root e

ynamic instruction Mix Summary

« Imegular Memary Access Patterns May Decrease Perfor
Suggestion: See Recommendations Tab

FMA

= Gathers/ Blends point to B s © e

Mask Manipulations
63% Vectorization Efficiency Vectorization Gain

memory issues and vector
inefficiencies

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

CARM Analysis

Using single threaded roof

Performance (GFLOPS) X a [B - | [/ Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks ©

100

Code vectorized, but
=" performance on par with
scalar add peak?

?
Scalar Add Peak: 2 23 GFLOPS

= |rregular memory access
patterns force gather
operations.

| » QOverhead of setting up
Arthmetc tensity (FLOP/Byte) vector o p erat | ons
reduces efficiency.

T T
0.01 0.1 1
Self Elapsed Time: 10.080s Total Time: 10.080 s

Next step is clear: perform a Memory Access Pattern analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement)

aprun -n 1 -N 1 advixe-cl --collect map --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

NI

2l

F) Summary % Survey & Roofline ¥ Refinement Reports (& MAP Source: GSimulation.cpp
Site Location Loop-Carried Dependencies Strides Distribution Access Pattern Max. Site Footprint | Site Name Recommendations
7 [loop in start at GSi pp:1.. No i 33%/ 33% /3% Mixed strides 5KB loop_site_1 @ 2 Inefficient gather/scatter instructions present
v
Memary Access Patterns Report | D ies Report | ' Re dati \ ’ " /
ID ® |Stride |Type Source Nested Function | Variable references Max. Site Footprint | Modules | Site Name | Access Type
P 0; 40 ock 0x60a0b0 allocated a ation.cpp:109 | 4KB Re
142 real_type distanceInv = 0.0f;
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1flop
145 ly = particles[j].pos[1] - particles[i].pos[1]; //1£lop
146 dz = particles[j].pos[2] - particles[i].posa[2]; /1flop
P2 Gather stride GSimulation.cpp:144 block 0x60a0b0 allocated at GSimulation.cpp:109 SKB nbody.x loop_site_.1 Read
142 real_type distanceInv = 0.0f;
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1£1lop
145 dy = particles[j].pos[1] - particles[il.pes[1]; /1flop
146 dz = particles[j].pos[2] - par [i].pos[2]; //1flop
P3 Parallel site information GSimulation.cpp:144 nbody.x loop_site_1
142 real_type distanceInv = 0.0f;
143
144 il. i]l.pos(0]; //1£1lop
145 jl.po s[//1flop
46 dz = particles[j].pos[2] - particles[i].pos[2] //1£lop
P B 0 Uniform stride GSimulation.cpp:149 48 nbody.x loop_site 1 Read
147
148 distancesqr = dx*dx + dy*dy + dz*dz + softeningSquared; //6£lops
145 distanceInv = 1.0f / sqrtf(distancesqr); //1div+lsqre
51 particles[i].acc[0] += dx * G * particles[j].mass * distancelnv * distancelnv * distancelnv; //6£lops

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non-unit
strides in memory access

= 33% unit

= 33% uniform, non-unit

* 33% non-uniform
Re-structuring the code into a
Structure Of Arrays (SOA) may

lead to unit stride access and
more effective vectorization

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically

vectorized where memory locations are not contiguous

{
public:

real type
real type
real type

real type
};

struct Particle

pos[3];
vel[3];
acc[3];
mass;

{
public:

real type
real type

real type
real type

struct ParticleSoA

*pos_x,*pos_y,*pos_z;
*vel x,*vel y,*vel z;
*acc_x,*acc_y;*acc_z
*mass;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
I —~
H
il
|.l.
(0]
|_l
[0}
n
2
-
- ~
o
H
N
|.l.
(0]
|_l
[0}
1]
E:
i .

4
A

Vector
Register

SoA - structure
of arrays

//hemory “\\

P.pos_x[i]

P.pos_x[i+l]

P.pos_x[i+2]

P.pos_x[i+3]

P.pos_x[i+4]

p-pos_x[i+5]

p-pos_x[i+6]

P.pos_x[i+7]

P.pos_x[i+8]

A 4

Vector
Register

Performance After Data Structure Change

In this new version (version 3 in
github sample) we introduce the
following change:

» Change particle data structures
from AOS to SOA

Note changes in report:

= Performance is lower

= Main loop is no longer
vectorized

= Assumed vector dependence
prevents automatic vectorization

[Summary % Survey & Roofline ™0 Refinement Reports

Self Time = | Total Time Type

360s @ Scalar

" (5.0 [loop in GSimulation:start at GSimulation.cpp:171]

@ 1 Assumed depe.. 0.040s!

[0 <1 =1 Function Call Sites and Loops ¥ Performance
Issues
= O [loopin cpp:151] 1A
Scalar loop. N o Se:
: [No loop trai No

e
0.040s1 Scalar

1 start 0.000s! 464005 S Function
4 f main 0.000s1 46.400s B Function
2 1 GSimulation-start 0.000s|_ 46.400< MR Function
< > <
Source | Top Down | Code Analytics ‘ Assembly IJ '@ Why No Vectorizati
Loop in GSimulation::start at G Simulation.cpp:151 Average Trip Counts: 2000
O 463605
Scalar Total time
46.360s Static Instruction Mix
Self time
Memory 8 C te: 11 Mixed 11 Other
4 sters: 21
¥ Static Instruction Mix Summary
» Memory 24% (8) @I
» Compute 32% (11) B
> Mixed 32% (1) BB
Other 12% (4) @
® Dynamic Instruc
Traits ®
Souare Roots. FMA R

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorized Loops | rLops &
Vector.. Gain E.. VL (Ve..|Self GFLOPS
1122800 ¢

Why No Vectorization?

& vector dependence pre...

revents vectorization

@ vector dependence preve.. 0475@8 C

() GFLOPS: 1.12166 ®

AVX-512 Mask Usage: 100

(¥) Code Optimizations

Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
running on Intel{R) 64,
Version: 18.0.0 128 Build 20170811

Dependencies Analysis (Refinement

aprun -n 1 -N 1 advixe-cl --collect dependencies --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

Bl Summary % Survey & Roofline | *1 Refinement Reports |3 Dependencies Source: GSimulationcpp w’"‘"“ . .
Site Location 'Loop—('arried Dependencies | Strides Distribution Access Pattern Max. Site Footprint |Site Name Recommendations D e p e n d e n C I e S a n a lys I S h as

F [loop in start at GSimulation.cpp:157] @RAW:4 No information available No information available No information available loop_site_1 & 1 Proven (real) dependency present
.
hieh overhead:
:

l = Run on reduced

Memory Access Patterns Report | Dependencies Report

Site Name | Sources Modules State Severity
PI @ Parallel site information loop_site_1 GSimulationcpp nbodyx v Not a problem Error 4items
P3 @ Read after write dependency loop_site1 GSimulation.cpp nbodyx MNew Information 1 tem kl d
P4 Read after write dependency |loop. GSimulation.cpp; main.cpp | nbody.x New = WO r Oa
P5 @ Read after wiite dependency loop_site_1 GSimulation.cpp nbodyx M New ype
i P6 @ Read afterwrite dependency loop_site_1 GSimulation.cpp nbodyx MNew Parallel site information 1 item
Read after write depend... 4 items
. . .
| Pty Advisor Findings:
D |Instruction Address | Description | Source Function |Variable references | Module | State A | GSimulation.cop 5 items g -
=X3 Oxd01c85 Parallel site [GSimulation.cpp:157 start nbodyx ReNew main.cpp 1 fem
1 real type distancelinv = Module
1/1510p nbody.x 5 items -
seiop = ependaency
1flop _
GSimulation.cpp:164 start register XMM1 nbodyx MNew New 4 ftems
Not a problem 1item

istancesgr) ; agrt
dx * G * particles->mass[j]

* distaneeInv * distanceInv * distancelnv; //6flops
- ma - / s

= Multiple reduction-type

nbodyx R New

s dependencies

particles->acc x[i]l += dx * G * particles— [4] * distanceIny * distanceIny * dist Inv: //6flcos

ncesgr) ;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recommendations

Memory Access Patterns Report l Dependencies Report ‘ ¥ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Resolve dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following

« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd
safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

fpragma omp simd safelen(4)
for (1 =0; 1 <n - 4; 1 += 4)
{

af[i + 4] = a[i] * c;

ISSUE: PROVEN (REAL) DEPENDENCY
PRESENT

The compiler assumed there is an
anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

Resolve dependency

o If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:

#pragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance After Resolved Dependencies

Summary % Survey & Roofline |™{/Refinement Reports

Performance (GFLOPS) x (Q) B ~ | [Use Single-Threaded Roofs @ | [] Show Roofline with Callstacks €

«n
z
5]
2

100

14

T T
0.01 0.1 1 10

Self Elapsed Time: 2.320s Total Time: 2.320 s Arithmetic Intensity (FLOP/Byte)

New memory access pattern plus vectorization produces much improved performance!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

What next?

Performance per core may be

improved, but it is capped at
~5x current value.

Let's explore threading with a
suitability analysis.

= Recompile including
annotation definitions

» Add headers to file
= Annotate suggested loops

= Run suitability collection

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Elapsed time: 2435 | * | [N A y] | | FLTER| Al Moduies || Al sources ~

Bl Summary % Survey & Roofline % Reports O ion Report 3 Suitability Report

Threading Advisor is a threading design and prototyping tool that lets you analyze, design, tune, and check threading desi¢
without disrupting your normal development.

i No source files found to scan for annotations.
No appropriate source files were found in your project.

(*) Program metrics

Elapsed Time 243s
Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 26.12 Total GFLOPS 10.77

Total Arithmetic Intensity © 0.63431
(>) Loop metrics

p

(») Vectorization Gain/Efficiency

() Top time-consuming loops”

Consider adding parallel site and task annotations around these time-consuming loops found during Survey analysis.

Loop Self Time™ Total Time” Trip Counts®
G [loop in GSimulation:start at GSimulation.cpp:143 Os 2.380s 500

G [loop in GSimulation:start at GSimulation.cpp:146 0.040s 2.360s 2000

" [loop in GSimulation:start at GSimulation.cpp:154] 2.320s 2.320s 125

G [loop in GSimulation:start at GSimulation.cpp:177 0.020s 0.020s 2000

) Collaction datailc

Annotating the code

Add annotations as shown on the left sample finelude Tadviser-annotate. nt
Complex sites may be analyzed in more detail ANNOTATE_SITE_BEGIN (steps)

. . . for (int s=1; s<=get_nsteps(); ++s)
using task sections if needed {

= ANNOTATE_SITE_BEGIN / ANNOTATE_SITE_END

ANNOTATE_TASK_BEGIN (parti cles)
for (1 = 0; i < n; i++)

= ANNOTATE_TASK_BEGIN / ANNOTATE_TASK_END {

Recompile including annotation definitions: ;

ANNOTATE TASK END (particles)

}
ANNOTATE SITE END (steps)

-I/opt/intel/advisor/include

Collect suitability data

aprun -n 1 -N 1 advixe-cl --collect suitability --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte‘ . 27

*Other names and brands may be claimed as the property of others.

Suitability report

Good speedup expected, but far By St Rt e 4 /o

Maximum Program Target System: [CPU v Threading Model: | OpenMP ~ CPU Count: |64 -
. . .
~ 0 Gain For Al Sites: 36.40x Combined Site Metrics, Al Instances B | Gite instance Metrics, &
0 . Site Label | Source Location Impact to Program Gain g
Serial time: 22105 Total Serial Time | Total Parallel Time | Site Gain | Parallel Time

Prediicted Parallel time: 0067 o 2 GSimulation.cpp:144) 36.40x 21925 00435 5132|0043

Modeling shows that increasing the
. sueP«rormlemm'
task length Would Improve Scalability of Maximum Site Gain Tasks Modeling Rumi-me Modeling

» Avg Number Avg. Task f Change ain Benefit if Enabled

effi C i e n Cy.) : ;‘JGTasks guoo.-:?oﬂ [[] Reduce Site Overhead

[[] Reduce Task Overhead +190x

0.008x 0.008x

g 0040 0040y [Reduce Lock Overhead

E 0.200x 0.200x []Reduce Lock Contention
ax

1 1x (500) ——1 1% (0.0045)
Sx Sx

Next step: add omp parallel region to - L |5 s

code and re-rest IR
I 15.1% Load Imbalance: 0.006s v
I 5.6% Runtime Overhead: 0.002s v

I 0.0% Lock Contention: 0s

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline for Threaded Version

Performance (GFLOPS) k (Q P - | [Use Single-Threaded Roofs @ | [] Show Roofiine with Callstacks @ =

wloms for (int s=1; s<=get nsteps(); ++s)
_________________________ oo et wnponey. || {
tsO0 += time.start();

#pragma omp parallel for

_ for (1 = 0; i < n; i++) // update acceleration
° ence t

real type ax i

| real type ay i
real type az i

particles->acc_x[i];
particles->acc_y[i];
particles->acc_z[i];

#pragma omp simd reduction(+:ax_i,ay i,az_i)

o ;o for (J = 0; j < n; j++)
I
{
Bl o owm : 0o real type dx, dy, dz;
real type distanceSqr = 0.0f;
Now using regular roofline, instead of single-threaded real_type distanceInv = 0.0f;

. . . . dx = particles->pos x[j] - particles->pos_x[i];
Still room for improvement, but at this point we need

additional detail regarding shared resource utilization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL” VTUNE™ AMPLIFIER

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= |Low overhead

» Comprehensive (microarchitecture, memory, IO, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

Analyzing code access to shared resources is critical to achieve good
performance on multicore and manycore systems

VTune Amplifier takes over where Intel® Advisor left

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

» advanced-hotspots
= concurrency

= disk-io

= general-exploration
= gpu-hotspots

= gpu-profiling

= hotspots

» hpc-performance

» locksandwaits

" memory-access

= memory-consumption
= system-overview

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

Advanced Hotspots

Concurrency

Disk Input and Output

General microarchitecture exploration
GPU Hotspots

GPU In-kernel Profiling

Basic Hotspots
HPC Performance Characterization
Locks and Waits

\ 4

Memory Access
Memory Consumption

\ 4

System Overview

*Other names and brands may be claimed as the property of others.

\ 4

Python Support

The HPC Performance Characterization Analysis

Threading: CPU Utilization
= Serial vs. Parallel time
» Top OpenMP regions by potential gain

» Tip: Use hotspot OpenMP region analysis
for more detail

Memory Access Efficiency
= Stalls by memory hierarchy

» Bandwidth utilization

» Tip: Use Memory Access analysis

Vectorization: FPU Utilization
» FLOPS T estimates from sampling

» Tip: Use Intel Advisor for precise metrics
and vectorization optimization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

® HPC Performance Characterization HPC Performance Characterization viewpoint (change) @ INTELVTUNE AMPLIFIER XE 2017

28 Collection Log| @ ype | EEEEUGERTE |+~ Bottom-up
Elapsed Time *: 3.859s
GFLOPS“: 4.743

CPU Utilization *: 31.3% [«

27.509 Out of 88 logical CPUs
0.761s (19.7%)
3.098s (80.3%)
2.470s (64.0%)
0.627s (16.3%)

Average CPU Usage

Serial Time

Parallel Region Time
Estimated |deal Time
OpenMP Potential Gain

Top OpenMP Regions by Potential Gain

CPU Usage Histogram

Memory Bound ~: 50.3% &
Cache Bound 0.092
DRAM Bound 0.194

MNUMA: % of Remote Accesses @ 0.0%
Bandwidth Utilization Histogram

FPU Utilization “: 0.3% [«
GFLOPS
Scalar GFLOPS

4743
4.735
Packed GFLOPS : 0.008
Top 5 hotspot loops (functions) by FPU usage

>U Usage Histogram
is histogram displays a percentage of the wall time the specific number of CPUs were runnin g simultaneous| ly. Spin
d Overnead time adds to the ldle CPU usage value.

sooms

Iy
2
E
>
&

Elapsed Time

600ms

Target Utilization

|
|
|
|
|
|
400ms }

200ms

ER

T
0 20 40 60

]

Simultaneously Utilized Logical CPUs

T For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation

Intel® Xeon Phi™

processor code named Knights Landing.

Memory Access Analysis

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance

= Attribute cache misses to data structures
(not just the code causing the miss)

» Support for custom memory allocators

DRAM Bandwidth, GB/sec

poi
b pe latform
s s 5

: i U1 e da it a Tk Ak Total GBfsec

Loy % Read, GB/sec

package 0 50.8 % Write, GB/sec
= CPU Time [
12.7 ¥ luk CPUTime |

27200% ~

package 0 18133%
8067% 9
< > »

CPU ... DRAM Bandui,

Grouping'| Bandwidth Domain | Bandwidth Utiization Type Memory Object [Allocation Stack Y=a]]

Bandwidth Demain / Bandwidth Utiliz... CPUTime ¥ ‘ L2 Miss Count]
v DRAM, GB/sec 840.303: D 6,000,180
. . g v High 5036355 N 4000.120
Optimize NUMA latency & scalability s
» steam c58 (381 MB) 2,000,060
. T & f l h » Medium 241636 @ 0
t t » Low 905295 0 2,000,060
rue alse s arlng Op ImiZzation » MCDRAM Flat GBfsec 8408035 . 6,000,180

= Auto detect max system bandwidth BT
» Easier tuning of inter-socket bandwidth

Bandwidth Domain / Bandwidth Utiliz_.. CPUTime ¥ | L2 Miss Count
v DRAM, GB/sec 840803 D 6.000.180
Easier install, Latest processors v 00 G TVE) 506635 S Ly
= No special drivers required on Linux* b stream.c:98 (331 MB) 2,000,060
= Intel® Xeon Phi™ processor MCDRAM (high :T;fium 2;-232: .. zm%g
bandwidth memory) analysis S VCDRAN Flat GBjsec I — 5000150

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte‘ . 34

*Other names and brands may be claimed as the property of others.

Using Intel® VTune™ Amplifier on Theta

Two options to setup collections: GUI (amplxe-gui) or command line (amplxe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

Some things of note:
» Use /projects rather than /home for profiling jobs
= Setyour environment:

$ source /opt/intel/vtune amplifier/amplxe-vars.sh
$ export LD LIBRARY PATH=/opt/intel/vtune amplifier/1ibé64:SLD LIBRARY PATH
$ export PMI NO FORK=1

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sample Script

#!/bin/bash

#COBALT -t 30
#COBALT -n 1 —Basic scheduler info (the usual)
#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD LIBRARY PATH=/opt/intel/vtune amplifier/lib64:$LD_LIBRARY PATH >Environment setup

source /opt/intel/vtune_amplifier/amplxe-vars.sh
export PMI_NO_FORK=1

export OMP_NUM THREADS=64; export OMP_PROC_BIND=spread; export OMP_PLACES=cores | Invoke VTune™ Amplifier

aprun -n 1 -N 1 -cc depth -d 256 -j 4 amplxe-cl -c hotspots -knob analyze-openmp=true \
-r ./vtune_res -- ./exe

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hotspots analysis for nbody demo (ver7: threaded)

METIEE T e vuners X =
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) & INTEL VTUNE AMPLIFIER 2018
4 [Collection Log (3 Analysis Target A Analysis Type & Summary & Botiom-up & Caller/Callee & Top-down Tree 4 Platform v
Elapsed Time : 1.037s
CPU Time : 21.4208
Effective Time : 2.280s
Spin Time 7 18.660s I
mbalas al il 173195
0s
b 13425
Overhead Time ~: 0.480s
Tot: ead (it 64
sed Tim 0s

OpenMP Analysis. Collection Time : 1.037
Serial Time (outside parallel regions) : 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions)

Parallel Region Time - 0.304s (29.3%)

Top Hotspots

CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of GPUS were running simutaneously. Spin and Overhead time adds to the Idie CPU usage
value

1000ms.

B00ms

Elapsed Time
Target Liiization

B00ms

Simultaneously Utized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

OpenMP Region Duration Histogram
This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
bottieneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration.

OpenMP Region: | startSompSparallel 64@unknown 146:182 ~

=
8
Instance Count

Duration Type (sec)

Lots of spin time indicate issues with load balance and
synchronization

Given the short OpenMP region duration it is likely we do not
have sufficient work per thread

Let's look a the timeline for each thread to understand things
better...

Bottom-up view

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
B Collection Log @ Analysis Target A Analysis Type & Summary & Bottom-up &3 Caller/Callee & Top-down Tree ' Platform [GSimulation...
Grouping:| Module / Function / Call Stack

CPU Time ¥
Module / Function / Call Stack Effective Time by Utiization » » L Module
§ide WPoor BOK Bideal @Over | SP" 1M | Overhead Tme
» libiomp5 so 0s 186&05 0.320s
¥ nbody.x 2.260s _ 0.160s

» GSimulation:start

» [Unknown] S I 0s

> <
o: + e e 0s 01s 02s
OMP Master Thread #0 (TID..
OMP Worker Thread #60 (T1.
OMP Worker Thread #56 (T).
OMP Worker Thread #50 (T1
OMP Worker Thread #55 (T1.
OMP Worker Thread #54 (T1.
OMP Worker Thread #49 (T1.
OMP Worker Thread #58 (T1_ |
OMP Worker Thread #58 (T1
OMP Worker Thread #61 (T1.
OMP Worker Thread #52 (T1.
OMP Worker Thread #41 (T1
OMP Worker Thread #47 (T1_ |
OMP Worker Thread #35 (T1
OMP Worker Thread #39 (T1.

Thread

GSimulation:start(void)

P~

~|[&][Q][% |[cPu Tme

v

Viewing + 1of1 + selected stack
100.0% (2 260s 0122&35)
nbody xIGSin)

; libiomp?5.sol|
 libiomp5 sol|
» GSimulation: startSomp3Sparallel_forg 2.260s 0s | nbody.x GSimulation: startSompSpatfiylstls FRLE

).160s nbody.x

nbodyxh. ai
nbodyxl_s

art+0x28 - stat $:118

Ruler Area:
™ Region Instance
[= OpenMP Barier-
to-Barrier Segment
[Thread]
I Running
4 CPU Time
i Spin and Overhea
[0 *® CPUSample

[] CPU Usage

FILTER 1000% 5 | [AnyProcess | Thiead | any Trread ~ || Any Module [Any tiizatio ~ S Only user functions

|| Show iniine functic ~ | Functions only

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per
thread in this particular example.

Double click on line to access
source and assembly.

Notice the filtering options at the
bottom, which allow customization
of this view.

Next steps would include
additional analysis to continue the
optimization process.

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The "application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

SiBasic Hotepots| HORpots by CPU Usage viewpomt (hange) [0 INTELVTUNE AMPLIFIER 2018
N

7 B coliectionLog O Analysis Target A Analysis Type i Summary &3 Bottom-up & Caller/Callee @ Top-down Tree - Platform [covpy

S S—— Naive implementation of the
~calculation of a covariance matrix

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time

covpy 113533s
<genexpr: cov.py 91.587s
i — el Summaryv shows:
[Unknow frame(s)] 1260s -
module: covpy 0588s
. .
= Single thread execution
This histogram displays a percentage of the wall time the sps of CPUS were running Spinand O tothe Idie CPU usage value
2s sl
200s 4 £ g B!
' 3 - . L1 H n
o | 3 H op tunction Is "nailve
& [
H I
100s < |
I
I
50s I
|
I

| . ; i i Click on top function to go to Bottom-
: = up view

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © I ER2018
 ElCollectionLog @ Analysis Target A Analysis Type & Summary & 8ottom-up & Caller/Callee & Top-down Tree ' Platform [3 cov.py - /7/ L3
Grouping.| Module / Function / Call Stack Y[l |}[cPuTime |
CPU Time ¥ A | Viewing « 10f1 + selected stack(s)
Module / Function / Call Stack > Module 100.0% (1124735 of 112 473s)
0i0e O5om Ok Bea v | SPTme. | Overod Time P ——
v covpy 2037285 2280s 0s covpylmain+0x42 - covpy:200
¥ naive 111.873s 1660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy.
v main 110.833s (NS 1.660s 0s covpy main() python2.7!_stari+0x28 - [unknow.
1108135 | 16605 05 | covpy <modue>
» B main — <module> — _star S covpy main()
» M naive — main — <module> | 1.040s 0s 0Os covpy naive(fullAray)
» <genexpr> 90.967s (NS 06205 0s covpy naive@<genexpr>:
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown) 2720s | 0s 0s
» libc-dynamic so 132 s
» python2.7
» libpinddwarf so
~ trackdanc cn o-¢
< >ll¢ >
O: + 0s 505 100s 1505 200s) [Theead
£] #aCPUTime
[2] #a Spin and Overhead Ti
O ® cPu sample

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
7 EJCollectionLog D Analysis Target A Analysis Type & Summary @& Bottom-up & Caller/Callee @ Top-down Tree ‘=

Assembly “ % | % Q| Assembly grouping: Function Range / Basic Block | Address
CPU Time:
Sou. Source Etfective Time by Utili
Line y Utili
| @idie @Poor DOk W 1de:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for § in range (numRows) : |
64 normArrays (i) [§]=fullArray(:, i](3]-np.mean(fullrray(:, i 6.3%[
65
66
67 # calculate covariance and populate resulta array
68 for i in range {numCols):
69 for j in range (numCols): |
70 result[i,j] = sum(p*g for p,q in zip(
7 normArrays(i],nommirrays[j]))/ (numRows)
72
73 end = time.time()
74 print ('overall runtime = ' 4 str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Useful Options on Theta

If finalization is slow you can use -finalization-mode=deferred and simply
finalize on a login node or a differenet machine

If the collection stops because too much data has been collected you can
override that with the -data-limit=0 option (unlimited) or to a number (in MB)

Use the -trace-mpi option to allow VTune Amplifier to assign execution to the
correct task when not using the Intel® MPI Library.

Reduce results size by limiting your collection to a single node using an mpmd
style execution:

aprun -n X1 -N Y amplxe-cl -c hpc-performance -r resdir -- ./exe : \
-n X2 -N Y ./exe

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

EMON Collection

General Exploration analysis may be performed using EMON

= Reduced size of collected data

= Qverall program data, no link to actual source (only summary)
= Useful for initial analysis of production and large scale runs

= Currently available as experimental feature

export AMPLXE EXPERIMENTAL=emon

aprun [..] amplxe-cl -c general-exploration -knob summary-mode=true]..]

[Optimization Notice | T
; (intel 43

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages

» https://software.intel.com/sites/products/snapshots/application-snapshot

» https://software.intel.com/en-us/advisor

» https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles

» https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems

» https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

» https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-
covariance-demonstration

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

C_opyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

